Ruminanti Press

  • AviPlus®R un rimedio contro lo stress da caldo!

    Quando l’animale si trova ad affrontare per un tempo prolungato condizioni al di fuori della sua zona di termo-neutralità si parla di stress termico, con conseguenze negative sull’efficienza produttiva e riproduttiva. La risposta fisiologica allo stress da caldo è caratterizzata da una ridotta assunzione di sostanza secca e da un aumento della temperatura corporea, della […]
  • Ruminanti

    Rumen-protected methionine: a boost for primiparous dairy cows performance

    Methionine is considered the most limiting essential amino acid for ruminants (Schwab & Broderick, 2017). This element has a pivotal role in their productive performance and nitrogen efficiency.
  • Ruminanti

    Organic acid and plant botanical supplementation in heat-stressed Holstein calves

    Our findings in Holstein calves are early evidence that dietary microencapsulated OA/PB feeding is a means to partially restore feed intake and average daily gain post-weaning when challenged by heat exposure.
  • Ruminanti

    Effects of heat stress and dietary organic acids and botanicals on hepatic one-carbon metabolism

    Heat stress develops with methyl donor deficiency in parallel with an impaired N metabolism. The supplementation of OA/PB improves the remethylation capacity in the liver. On-going transcriptomic analyses will provide a better understanding of the hepatic metabolism of dairy cows exposed to heat stress.
  • Effects of ambient heat exposure and dietary organic acids and pure botanicals on gut permeability and milk production

    Heat exposure compromises the gastrointestinal barrier and leads to inflammation in non-ruminants. Our results indicate that heat stress increases gut permeability and inflammation markers rapidly and independently of dietary intake.
  • Effects of feeding 2 rumen-protected choline sources during the transition period on Holstein dairy cows performance and blood metabolites

    During the first weeks of lactation, dairy cows typically experience negative energy balance, leading to the mobilization of body reserves. This predisposes early lactating cows toward metabolic diseases, such as fatty liver syndrome and ketosis.
  • Phenol-Rich Botanicals Modulate Oxidative Stress and Epithelial Integrity in Intestinal Epithelial Cells

    The aim of this study was to screen the activity of different sources of phenol compounds on intestinal oxidation and barrier integrity in vitro.
  • Organic acids and botanicals supplementation on lactation performance in heat-stressed dairy cows

    Twenty multiparous non-pregnant Holstein cows were enrolled in a study with a completely randomized design. Cows were assigned to one of two groups fed a basal diet supplemented with 25g/d of AviPlus®R (TRT) or basal diet supplemented equivalent triglyceride used for microencapsulation (CTR).
  • Intestinal health helps preventing milk loss linked to ketosis and heat stress

    From an economic point of view, the lack of metabolic adaptation at the beginning of lactation (ketosis) and heat stress are two of the most important diseases for dairy cows as they seriously jeopardize the competitiveness of world animal husbandry and significantly reduce its efficiency.
  • Effects of feeding 2 rumen-protected choline sources during the transition period on Holstein dairy cows performance and blood metabolites

    During the first weeks of lactation, dairy cows typically experience negative energy balance, leading to the mobilization of body reserves. This predisposes early lactating cows toward metabolic diseases, such as fatty liver syndrome and ketosis.
  • Assessing intestinal health. In vitro and ex vivo gut barrier models of farm animals: benefits and limitations

    The concept of “gut health" is not well defined, but this concept has begun to play a very important role in the field of animal science. However, a clear definition of GIT health and the means by which to measure it are lacking. In vitro and ex vivo models can facilitate these studies, creating well-controlled and repeatable conditions to understand how to improve animal gut health.
  • Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows

    The aim of this study was to evaluate the effects of heat stress (HS) conditions and dietary organic acid and pure botanical (OA/PB) supplementation on gut permeability and milk production.
  • Effects of two rumen-protected choline sources during transition period on Holstein dairy cows performance

    The objective of this study was to evaluate the effect of two sources of rumen-protected choline (RPC) supplemented from 21 d pre- to 35 d postpartum.
  • Evaluation of a rumen-protected methionine product for lactating dairy cows at 2 concentrations of dietary crude protein

    This study evaluated the effect of a supplemental rumen-protected Met product (Timet; VETAGRO S.p.A.; Reggio Emilia, Italy) on lactation performance and rumen measures of dairy cows fed 2 concentrations of dietary CP.
  • In situ rumen degradability and in vitro intestinal digestibility of rumen-protected methyl donors and lysine

    Rumen degradation and intestinal digestibility of rumen-protected (RP) methyl donor and lysine products vary. Our objectives were to evaluate the in situ rumen degradability and in vitro intestinal digestibility of 4 RP products containing choline chloride, dl-methionine, betaine, and/or l-lysine in a triglyceride matrix.